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Abstract
We present a theory of superfluidity in the quasi-two-dimensional system of
spatially indirect magnetoexcitons in coupled quantum wells in the presence of
a random field. The problem of a dilute gas of magnetoexcitons with dipole–
dipole repulsion in the limit of high magnetic field can be mapped to the
problem of a dilute gas of two-dimensional excitons in a random field without
magnetic field. The density of the superfluid component ns and the critical
temperature Tc of the Kosterlitz–Thouless transition to a superfluid state are
obtained as functions of magnetic field H , electron–hole spatial separation D,
and the random field parameters. For two-dimensional magnetoexciton systems,
increasing the magnetic field H and the distance D suppresses the superfluid
density and the critical temperature of the Kosterlitz–Thouless transition. The
influence of the interwell distance D on ns and Tc in strong magnetic field is
opposite to the case without magnetic field, where ns and Tc increase with
increasing D, for fixed total exciton density n. We show that in the presence
of the disorder there must be a quantum phase transition from a superfluid to
a disordered phase at T = 0 as the magnetic field H is varied. There is no
superfluidity at any exciton density in the presence of the disorder at sufficiently
large magnetic field H or sufficiently large disorder.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Systems of excitons with spatially separated, two-dimensional (2D) electrons and holes, known
as indirect excitons, in magnetic fields (H ) have been the subject of several experimental
investigations [1–4]. Interest has been further spurred by the recent success in producing
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structures with very long exciton lifetime and diffusion length [5, 6], which allows the
possibility of equilibration in a macroscopic trap. Indirect excitons are of interest, in particular,
in connection with the possibility of excitonic superfluidity, which could manifest itself as
persistent electrical currents in coupled quantum wells (CQW) [7–13]. Substantial theoretical
work has also been carried out for the simpler system of excitons in single quantum wells in
high magnetic fields [14–24]. A general consequence of high magnetic field is that the mass of
the exciton does not depend on the band electron and hole masses, but instead, for H greater
than about 7 T, the exciton mass depends only on the strength of the magnetic field. In this
limit the binding energy of the excitons increases with increasing magnetic field, which means
that magnetoexcitons can survive in a substantially wider temperature region than the excitons
at zero magnetic field. Lerner and Lozovik [14] and Paquet et al [15] predicted that under
some conditions of symmetry in the system, exact solutions of the many-body problem in the
Hartree–Fock limit correspond to ideal Bose condensation of magnetoexcitons at any density.
Lerner and Lozovik later showed [16] that including the polarizability of the excitons restores
a weak repulsive interaction between the excitons, so that they can be treated as a weakly
interacting Bose gas. Some novel predictions include the existence of a dipolar supercurrent in
electron–hole bilayer systems which can be tuned by an in-plane magnetic field [17] and the
existence of a stable dielectric liquid state which is also superfluid [24].

In the following, we assume a translationally invariant two-dimensional system; the
superfluid state appears in the system under consideration below the temperature of Kosterlitz–
Thouless transition [25]. This was studied recently [13] for systems with spatially separated
electrons and holes in the absence of magnetic field, including the effect of disorder [26].

The critical prediction of interest to experiments is the temperature of the phase transition
to a superfluid state. It was shown [21] that increasing the magnetic field at a fixed
magnetoexciton density leads to a reduction of the Kosterlitz–Thouless transition temperature
Tc on account of the increase of the exciton magnetic mass as a function of a magnetic field H .
But it turns out that the highest possible Kosterlitz–Thouless transition temperature increases
with H (at small D), due to the rise in the maximal density of magnetoexcitons as a function
of H [21].

Previous theory of superfluidity in magnetoexcitonic systems did not take into account the
role of disorder, which is created by impurities and boundary irregularities of the quantum
wells. In real experiments, however, disorder plays a very important role. Although the
inhomogeneous broadening linewidth of typical GaAs-based samples has been improved from
around 20 meV to less than 1 meV [22], the disorder energy is still not much smaller than
the exciton–exciton repulsion energy at typical exciton densities. At an exciton density of
1010 cm−2, the interaction energy of the excitons is approximately 1 meV [27]. On the other
hand, the typical disorder energy of 1 meV is low compared to the typical exciton binding
energy of 5 meV.

A typical experimental example of indirect excitons in coupled quantum wells is two
coupled GaAs quantum wells with AlGaAs barriers [5, 6]. Fluctuations of the thickness of a
quantum well, which arise during the fabrication process, impurities in the system, and disorder
in the alloy of the barriers can all lead to the appearance of a random field. The dominant type
of disorder at low temperature is believed to be fluctuation of the barrier alloy composition,
with a characteristic length scale short compared to the excitonic Bohr radius of around 100 Å.

This paper joins together two lines of theoretical investigation which up to now have been
pursued separately: the theory of magnetoexciton condensates without disorder, and the theory
of superfluids in the presence of disorder. The collective properties and superfluidity of 2D
weakly interacting indirect excitons in weak disorder without magnetic field were analyzed
in [28]. In [26], this theory was generalized to the case of a random field which is not
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necessarily small compared to the dipole–dipole repulsion between excitons for CQW, again,
in the absence of magnetic field. The second-order Born approximation allowed us to derive
analytically the 2D indirect exciton Green’s function in the weak scattering limit (the second-
order Born approximation Green’s function for 3D excitons was obtained by Gevorkyan and
Lozovik [29]). It was predicted that in the low temperature limit, the density ns of the
superfluid component in CQW systems and the temperature of the superfluid transition (the
Kosterlitz–Thouless temperature Tc [25]) decrease with increasing strength of the random
field [26].

Some earlier theory has treated the case of magnetoexcitons in the presence of disorder,
without including the effect of superfluidity. The absorption spectra and wavefunctions of
optically active single magnetoexciton states in disordered quantum wells were calculated
numerically by Grochol et al [27]. In the fermion description the single-particle Green’s
function and the kernel of the Bethe–Salpeter equation both depend on the random potential
and the Coulomb interaction between the electrons and holes, and so the disorder and
the interactions were treated simultaneously on the level of the Bethe–Salpeter equation.
In [30], the spectrum of a single indirect 2D magnetoexciton (noninteracting with other
magnetoexcitons) in a strong perpendicular magnetic field in the presence of disorder was
obtained in the second-order Born approximation.

In the present paper we derive analytically the collective spectrum of the 2D low density
gas of weakly interacting indirect magnetoexcitons in the presence of the disorder, including
the dipole–dipole repulsion between magnetoexcitons in the ladder approximation [21]. We
consider disorder which is not weak compared to the dipole repulsion in the second-order
Born approximation [30]. The density of the superfluid component ns and the temperature
Tc of the Kosterlitz–Thouless transition to a superfluid state are obtained as functions of
magnetic field H , interlayer separation D and the random field parameters αi and gi . We
show that the density of the superfluid component and the Kosterlitz–Thouless temperature
of the superfluid phase transition decrease as the random field increases. These results are
derived by mapping the problem of the dilute indirect magnetoexciton gas with disorder in
a strong magnetic field onto the problem of the dilute dipole gas without magnetic field,
consisting of indirect magnetoexcitons with an effective mass which is a function of the
magnetic field and the parameters of the coupled quantum wells (CQW), in an H -dependent
effective random field. The application of these results, obtained for a CQW with spatially
separated electrons and holes, is also discussed for the case of an unbalanced two-layer
electron system.

The paper is organized in the following way. In section 2 we derive the effective
Hamiltonian of dilute, ‘dirty’, spatially indirect magnetoexcitons in the effective magnetic mass
approximation in the high magnetic field limit. In section 3 we obtain the Green’s function of a
single magnetoexciton in the random field. In section 4 the collective spectrum, the superfluid
density and the temperature of the Kosterlitz–Thouless phase transition of magnetoexcitons
are derived in the presence of disorder. In section 5 we discuss our results and consider the
extension of the framework used for the indirect magnetoexcitons in CQW on the system of
indirect magnetoexcitons in unbalanced two-layer electron system.

2. The effective Hamiltonian of dilute ‘dirty’ spatially indirect magnetoexcitons in the
effective magnetic mass approximation

The total Hamiltonian Ĥ of 2D spatially separated e and h in the perpendicular magnetic field
in the presence of the external field in the second quantization representation has the form
(h̄ = c = 1):
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Ĥ =
∫

dR
∫

dr
[
ψ̂†(R, r)

(
1

2me
(−i∇e + eAe)

2 + 1

2mh
(−i∇h − eAh)

2

− e2

ε
√
(re − rh)2 + D2

+ Ve(re)+ Vh(rh)

)
ψ̂(R, r)

]

+ 1
2

∫
dR1

∫
dr1

∫
dR2

∫
dr2ψ̂

†(R1, r1)ψ̂
†(R2, r2)

× (U ee(re1 − re2)+ U hh(rh1 − rh2)+ U eh(re1 − rh2)+ U he(rh1 − re2)
)

× ψ̂(R2, r2)ψ̂(R1, r1). (1)

Here ψ̂†(R, r) and ψ̂(R, r) are the operators of creation and annihilation of magnetoexcitons;
re and rh are electron and hole locations along quantum wells, respectively; Ae, Ah are the
vector potentials in the electron and hole locations, respectively; Ve(re) and Vh(rh) represent
the external fields acting on electron and hole, respectively (we use units c = h̄ = 1); D
is the distance between electron and hole quantum wells; e is the charge of an electron; ε is
the dielectric constant. We use below the coordinates of the magnetoexciton center of mass
R = (mere + mhrh)/(me + mh) and the internal exciton coordinates r = re − rh. The
cylindrical gauge for vector potential is used: Ae,h = 1

2 H × re,h. U ee, U hh, U eh and U he are
the two-particle potentials of the electron–electron, hole–hole, electron–hole and hole–electron
interaction, respectively, between electrons or holes from different pairs:

U ee(re1 − re2) = e2

ε|re1 − re2| ; U hh(rh1 − rh2) = e2

ε|rh1 − rh2| ;

U eh(re1 − rh2) = − e2

ε
√|re1 − rh2|2 + D2

;

U he(rh1 − re2) = − e2

ε
√|rh1 − re2|2 + D2

.

(2)

The conserved quantity for an isolated exciton in magnetic field without any external field
(Ve(re) = Vh(rh) = 0) is the exciton magnetic momentum (see [31]):

P̂ = −i∇e − i∇h + e(Ae − Ah)− eH × (re − rh). (3)

The conservation of this quantity is related to the invariance of the system upon a simultaneous
translation of e and h and gauge transformation.

The eigenfunctions of the Hamiltonian of a single isolated magnetoexciton without any
random field (Ve(re) = Vh(rh) = 0), which are also the eigenfunctions of the magnetic
momentum P, have the following form (see [14, 31]):

�kP(R, r) = exp

{
iR
(

P + e

2
H × R

)
+ iγ

Pr
2

}
�k(P, r), (4)

where �k(P, r) is the function of internal coordinates r; P is the eigenvalue of magnetic
momentum; k are quantum numbers of j exciton internal motion. In high magnetic fields
k = (nL ,m), where nL = min(n1, n2), m = |n1 − n2|, and n1 and n2 are the Landau quantum
numbers for e and h [14, 20]; γ = (mh − me)/(mh + me).

In this section we reduce the problem of the dilute gas of magnetoexcitons (in high
magnetic field) with dipole–dipole repulsion in a random field to the problem of the dilute gas
of dipole excitons without magnetic field with a new effective magnetic mass of the exciton,
which is a function of the magnetic field and the parameters of the quantum wells, in an H -
dependent effective random field. We assume the excitons all lie in the lowest Landau level
(the high magnetic field regime).
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We expand the magnetoexciton field operators in a single-magnetoexciton basis set
�kP(R, r)

ψ̂†(R, r) =
∑
kP

�∗
kP(R, r)â†

kP; ψ̂(R, r) =
∑
kP

�kP(R, r)âkP, (5)

where â†
kP and âkP are the corresponding creation and annihilation operators of a

magnetoexciton in (k,P) space.
We consider the case of strong magnetic field, when we neglect in equation (4) the

transitions between different Landau levels of the magnetoexciton caused by scattering by
the potential Ve(re) + Vh(rh). We also neglect nondiagonal matrix elements of the Coulomb
interaction between electron and hole in the same pair. The application region of these two
assumptions is defined by the inequalities

ωc � Eb, ωc �
√〈

V 2
e(h)

〉
av
, (6)

where ωc = √
eH/me−h, me−h = memh/(me + mh) is the exciton reduced mass in the

quantum well plane; Eb is the magnetoexciton binding energy in an ideal ‘pure’ system as
a function of magnetic field H and the distance between electron and hole quantum wells D:
Eb ∼ e2/εrH

√
π/2 at D � rH and Eb ∼ e2/εD at D � rH (rH = (eH )−1/2 is the magnetic

length) [14, 20]. Here 〈. . .〉av denotes averaging over the fluctuations of random field.
After exciton–exciton scattering the total magnetic momentum P = ∑

i Pi is conserved,
but the magnetic momentum Pi of each exciton can be changed. Since in a strong magnetic
field, the mean distance ρ between the electron and hole in the plane of the quantum wells is

proportional to the magnetic momentum (ρ = r2
H

H H×P) [14, 31], the scattering is accompanied
by the exciton polarization. We consider sufficiently low temperatures when magnetoexciton
states with only small magnetic momenta P � 1

rH
are filled. The change of these magnetic

momenta due to exciton–exciton scattering is also negligible due to the conservation of the
total magnetic momentum. But these small magnetic momenta correspond to small separation
between electrons and holes in the plane of the quantum wells ρ � rH. Therefore, the
magnetoexciton polarization due to scattering is negligible and the magnetoexciton dipole
moment stays almost normal to the quantum wells, d = eD, i.e. the interexciton interaction
law is not changed due to the scattering. For the dilute system in the strong magnetic field
n � r−2

H (n is the 2D density of excitons, and the characteristic radius of magnetoexciton in
the plane of the wells in strong magnetic field at small P approximately equals the magnetic
length rH [20]) the exciton–exciton interaction is a dipole–dipole repulsion, because the average
distance between excitons rs is large compared to the exciton radius (rs = (πn)−1/2 � rH).
Therefore for the dilute system in a strong magnetic field at n � r−2

H we have:

Û(|R1 − R2|) ≡ Û ee + Û hh + Û eh + Û he � e2 D2

ε|R1 − R2|3 . (7)

Notice that the magnetoexcitons repel like parallel dipoles, and their pair interaction potential
depends only on the coordinates of the center of mass of the excitons and does not depend on
the coordinates of the relative motion of the electron and hole.

Now we substitute the expansions (5) for the field creation and annihilation operators
in the total Hamiltonian (1) and obtain the effective Hamiltonian in terms of creation and
annihilation operators in P space. In strong magnetic fields, ωc = eH/μ∗ � e2/rH, the
characteristic value of e–h separation in the magnetoexciton |〈r〉| has the order of the magnetic
length rH = 1/

√
eH . The functions�k(P, r) (see equation (4)) are dependent on the difference

(r − ρ), where ρ = r2
H

H H × P [14, 31]. At small magnetic momenta P � 1/rH we
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have ρ � rH, and, therefore, in the functions �k(r − ρ) we can ignore the variable ρ

in comparison with r. In strong magnetic fields, the quantum numbers k correspond to the
quantum numbers (m, nL ) (see above). For the lowest Landau level we denote the spectrum
of the single exciton ε0(P) ≡ ε00(P). In high magnetic field, when the typical interexciton
interaction D2n− 3

2 � ωc, one can ignore transitions between Landau levels and consider only
the states in the lowest Landau level m = nL = 0. Using the orthonormality of functions
�mn(0, r) we obtain the effective Hamiltonian Ĥeff in strong magnetic fields. Since a typical
value of r is rH, and P � 1/rH in this approximation, the effective Hamiltonian Ĥeff in the
magnetic momentum representation P in the lowest Landau level m = nL = 0 has the same
form (cf [13]) as that of a two-dimensional boson system without magnetic field, but with
the magnetoexciton magnetic mass mH (which depends on H and D) instead of the exciton
mass (M = me + mh), magnetic momenta instead of ordinary momenta, and the renormalized
random field:

Ĥeff =
∑

P

ε0(P)â
†
PâP +

∑
P,P′

〈P′|V̂ |P〉â†
P′ âP + 1

2

∑
P1,P2,P3,P4

〈P1,P2|Û |P3,P4〉â†
P1

â†
P2

âP3 âP4, (8)

where V̂ = V̂e + V̂h. The dispersion relation ε0(P) of an isolated magnetoexciton on the lowest
Landau level is the quadratic function at small magnetic momenta under consideration:

ε0(P) ≈ P2

2mH
, (9)

where mH is the effective magnetic mass of a magnetoexciton on the lowest Landau level,
dependent on H and the distance D between the electron and hole planes (see [20]). In strong
magnetic fields, with D � rH, the exciton magnetic mass is mH ≈ D3ε/(e2r 4

H) [20]. The
quadratic dispersion relation (9) is true for small P at arbitrary magnetic fields H and follows
from the fact that P = 0 is an extremal point of the dispersion law εk(P). The last statement
may be proved by taking into account the regularity of the effective Hamiltonian HP as a
function of the parameter P at P = 0 and also the invariance of HP upon simultaneous rotation
of r and P in the CQW plane. For the magnetoexciton ground state, mH > 0. For high magnetic
fields rH � a∗

0 and at D � rH, the quadratic dispersion relation is valid at P � 1/rH, but for
D � rH it holds over a wider region—at least at P � D/r 2

H [20] (a∗
0 = ε/(2me−he2) is the

radius of a 2D exciton at H = 0).
The matrix element of the inter-magnetoexciton interaction 〈P1,P2|Û |P3,P4〉 is defined

as

〈P1,P2|Û |P3,P4〉 = 1

S2

∫
d2 R1

∫
d2 R2

∫
d2r1

∫
d2r2U(R1 − R2)

× �∗
k1P1
(R1, r1)�

∗
k2P2
(R2, r2)�k3P3(R1, r1)�k4P4(R2, r2). (10)

The matrix potential of Û (equation (7)) connecting the states 〈k1 = k2 = 0,P1,P2| and
〈k3 = k4 = 0,P3,P4| has the form

〈P1,P2|Û |P3,P4〉 = 1

S2
U(P3 − P1)δ(P1 + P2 − P3 − P4), (11)

where S is the area of a quantum well, and

U(P3 − P1) =
∫ ∫

U(|R1 − R2|) exp(i(P3 − P1)(R1 − R2))d
2|R1 − R2|. (12)

In the strong magnetic field limit, using the internal wavefunction of the magnetoexciton

in the lowest Landau level for �k(P, r − ρ) in equation (4) (recall ρ = r2
H

H H × P), we can
ignore the variable ρ relative to r at small magnetic momenta P � 1/rH. So in �k=0,P(R, r)
(equation (4)) we put P = 0 and ρ = 0 for �k=0(P, r − ρ), while we keep PR �= 0 in
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the exponent. This procedure is valid in a strong magnetic field at small magnetic momenta,
because the characteristic ρ is much smaller than the characteristic R ∼ rs = (πn)−1/2

(rH � (πn)−1/2). Keeping PR �= 0, we can use the magnetic momentum conservation law
below. So in the strong magnetic field limit, using for�k(0, r) the internal wavefunction of the
magnetoexciton in the lowest Landau level [20]

�k=0(0, r) = 1√
2πrH

exp

[
− r 2

4r 2
H

]
, (13)

we obtain the matrix element of the external potential Ve,h(r) connecting the states 〈k = 0,P|
and 〈k = 0,P′|, which is defined as

〈P′|V̂e,h(r)|P〉 = 1

S

∫
d2 R

∫
d2r Ve,h(re,h)�

∗
k′P′(R, r)�kP(R, r), (14)

and has the form

〈P′|V̂e,h(r)|P〉 = 1

S
exp

(
−(P′ − P)2

r 2
H

4

)
Ve,h(P′ − P) exp

(
± ir 2

H

2H
HP × P′

)

= 1

S
Ṽe,h(P′ − P) exp

(
± ir 2

H

2H
HP × P′

)
,

(15)

where

Ve,h(P′ − P) =
∫ ∫

Ve,h(r) exp[i(P′ − P)r] d2r. (16)

Then, using the expressions for the matrix elements (10) and (14), the expansions for the
field operators (5), applying the orthonormality of functions �k(0, r), and employing only
the lowest Landau level k = 0 in the strong magnetic field limit, we finally obtain from
equation (8) the effective Hamiltonian of dipole indirect magnetoexcitons in high magnetic
field in the presence of the disorder, in coordinate space:

Ĥeff =
∫

dRψ̂†(R)
(

− ∇2

2mH
+ Veff(R)

)
ψ̂(R)

+ 1
2

∫
dR1

∫
dR2ψ̂

†(R1)ψ̂
†(R2)U(R1 − R2)ψ̂(R2)ψ̂(R1), (17)

where ψ̂†(R) and ψ̂(R) are the Bose creation and annihilation field operators (we discuss below
the validity of the assumption about magnetoexcitons being bosons), and the coupling to the
effective random field Veff(R) has the form

Veff(R) = 1

πr 2
H

∫
exp

(
− (R − r)2

r 2
H

)
[Ve(r)+ Vh(r)] dr. (18)

Equation (18) is valid if the following inequality holds [32]:

rexc

√〈∇V 2
〉
av

� Eb, (19)

and it holds for strong magnetic field, when rexc = rH = (eH )−1/2, and Eb ∼ e2/εD at
D � rH [20, 30].

The effective magnetoexciton Hamiltonian Ĥeff (17) treats the magnetoexciton as an
electrically neutral composite particle. Since the particle is neutral, it does not directly interact
with the magnetic field. The interaction with the magnetic field manifests itself through the
renormalization of the exciton effective mass and modification of the correlation function of
the random field. Thus, we can map the original problem of the dilute weakly interacting
magnetoexciton system in a strong magnetic field in the presence of disorder, described by the

7
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total Hamiltonian (1), to the dilute system of excitons without magnetic field with the effective
magnetic mass mH and in the presence of the effective random field Veff (equation (18)), which
is renormalized by the magnetic field H . The dipole–dipole interaction term in the effective
Hamiltonian (17) in the strong magnetic field limit is exactly the same as one for the excitons
without magnetic field, because the dipole–dipole interaction does not depend on the relative
coordinates of electron and hole in the exciton as long as we assume the excitons are parallel
dipoles (as discussed above). This mapping allows us to use the results for the collective
spectrum, superfluid density and Kosterlitz–Thouless temperature, obtained for the system in
random field without magnetic field [26], for the case of strong magnetic field.

3. The Green’s function of a single magnetoexciton in the random field

The interaction between a spatially indirect exciton in coupled quantum wells and a random
field, induced by fluctuations in widths of electron and hole quantum wells, has the form [30]:

V (re, rh) = αe[ξ1(re)− ξ2(re)] + αh[ξ3(rh)− ξ4(rh)], (20)

where αe,h = ∂E (0)
e,h/∂de,h, where the subscript e or h refers to either the electron or hole,

respectively. de,h is the average widths of the electron and hole quantum wells, E (0)
e,h are

the lowest energy levels of the electron and hole in the conduction and valence bands, and
ξ1 and ξ2 (ξ3 and ξ4) are fluctuations in the widths of the wells on the upper and lower
interfaces, respectively. We assume that fluctuations on different interfaces are statistically
independent, whereas fluctuations of a specific interface are characterized by the Gaussian
correlation function

〈ξi (r1)ξ j (r2)〉 = giδi jδ(r2 − r1), 〈ξi (r)〉 = 0, (21)

where gi is proportional to the squared amplitude of the i th interface fluctuation [30]. This
is possible if the distance D between the electron and hole quantum wells is larger than the
amplitude of fluctuations on the nearest surfaces.

In order to obtain the Green’s function of the magnetoexcitons with dipole–dipole
repulsion in the random field, we obtain the Green’s function of a single magnetoexciton in
the random field (not interacting with other magnetoexcitons), and then apply perturbation
theory with respect to the dipole–dipole repulsion between excitons, using the system of the
noninteracting magnetoexcitons as a reference system, in analogy with the system without
magnetic field [26].

In general, the single-particle Green’s function and the kernel of the Bethe–Salpeter
equation both depend on the random potential and the Coulomb interaction between the
electrons and holes, and, therefore, the disorder and the interactions have to be treated
simultaneously. The spectrum of a single noninteracting magnetoexcitons in the presence of
disorder was calculated on the level of the Bethe–Salpeter equation in [27]. We consider the
case of the correlation length of the random field potential L much shorter than the average
distance between excitons rs ∼ 1/

√
πn (L � 1/

√
πn, where n is the total exciton density);

L is also much smaller than the radius of a magnetoexciton (L � rexc), and the condition (19)
applies. This implies that the imaginary part of the denominator Q is proportional to the random
field correlation function strength. Under these assumptions the dipole–dipole repulsion can be
treated in the ladder approximation, which implies that the vertex is proportional to the density
n, and disorder is treated in the second-order Born approximation. The diagrams contributing to
the self-energy containing four lines (two electron and two hole lines), which are responsible for
the renormalization of the Coulomb interaction by the random field, are proportional to Qnr 2

exc.
Since these terms contain the small parameter nr 2

exc � 1, while the self-energy represented in

8
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our paper contains only terms proportional to Q, these terms can be neglected for a Belyaev
weakly interacting Bose gas with the disorder treated by the second-order Born approximation
with the negligibly small correlation length of the random field.

Since the effective magnetoexciton Hamiltonian (17) is translationally invariant, we can
write the Green’s function of an isolated magnetoexciton in momentum space. The Green’s
function G(0)(p, ω) of the center of mass of the isolated magnetoexciton at T = 0 in the
momentum–frequency domain in the random field in the coherent potential approximation
(CPA) is given by [30] (here and below h̄ = 1)

G(0)(p, ω) = 1

ω − ε0(p)+ μ+ iQ(p, ω)
, (22)

where μ is the chemical potential of the system, and ε0(p) = p2/2mH is the spectrum of
the center of mass of the exciton in the ‘clean’ system. The function Q(p, ω) is determined
by effective random field acting on the center of mass of the exciton. For zero random field,
Q(p, ω) → 0. If α2

i gimH � Eb, the function Q(p, ω) in the coherent potential approximation
is given by [30]

Q(p, ω) = 1

2

∫
G(0)(q, ω)B(|p − q|) d2q

(2π)2
, (23)

where

B(p) ≡
∫

d2 RB(R)e−ipR, (24)

for R = R1 − R2, and in the coordinate domain B(R1,R2) = 〈Veff(R1)Veff(R2)〉av. Using the
effective potential Veff given by equation (18), this has the form [30]

B(R1,R2) = B(R1 − R2) = α2
e (g1 + g2)+ α2

h(g3 + g4)

2πr 2
H

exp

(
− (R1 − R2)

2

2r 2
H

)
. (25)

Note that in the limit of strong magnetic fields the magnetic length rH = (eH )−1/2 is much
smaller than the characteristic length of the random field potential L (rH � L), and therefore

lim
rH |R1−R2|−1→0

B(R1 − R2) = α2
e (g1 + g2)+ α2

h(g3 + g4)√
2πrH

δ(R1 − R2). (26)

The random field acting on a magnetoexciton is represented by the white noise correlation
function of the random potential B(R1,R2) = 〈Veff(R1)Veff(R2)〉av. The time-reversal
symmetry of the effective magnetoexciton Schrödinger equation in strong magnetic field,
corresponding to the effective Hamiltonian (8) with the effective random field (18), and
elimination of the long-range property of the random field (equation (26)), cancels all effects
related with the broken time-reversal symmetry in the Schrödinger equation (1) for me �= mh

that result in corrections to the Green’s function of a magnetoexciton [33].
Using equation (24), we obtain the Fourier transform of B(R)

B(p) = α2
e (g1 + g2)+ α2

h(g3 + g4)

16π4
exp

(
−r 2

H p2

32

)
. (27)

Thus the CPA Green’s function of the 2D indirect exciton can be determined by the solution of
the self-consistent equations (22) and (23).

In the weak scattering limit (giαi mH � Eb ∼ e2/εD ) we use the second-order Born
approximation for Q similar to [29, 30, 26], expanding Q (equation (23)) in series to the first
order in B(|p − q|) (which is the first order in gi ), and we replace equation (23) by:

Q(p, ω) = π

2

∫
δ

(
ω − q2

2mH

)
B(|p − q|) d2q

(2π)2
. (28)

9
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Substituting B(p) from equation (27) into (28), we obtain for Q(p, ω)

Q(p, ω) = α2
e (g1 + g2)+ α2

h(g3 + g4)

64π4
mH exp

(
− r 2

H

32
(p2 + 2mHω)

)
J0

(
r 2

H

16

√
2mHωp

)
,

(29)

where J0(z) is the Bessel first integral. The second-order Born Green function of the single
indirect exciton in the random field in CQW G(0)(p, ω) is derived by substituting Q(p, ω)
from equation (29) into (22).

4. Collective spectrum and superfluidity of indirect dirty magnetoexcitons

Due to the interwell separation D, indirect magnetoexcitons both in the ground state and in
excited states have electrical dipole moments. We suppose that indirect excitons interact as
parallel dipoles. This is valid when D is larger than the mean separation 〈r〉 between electron
and hole in the magnetoexciton along quantum wells D � 〈r〉. We approximate that at high
magnetic fields 〈r〉 ≈ Pr 2

H (〈r〉 is normal to P) and that the typical value of magnetic momenta
is P ∼ √

nex (with exactness to the logarithm of the exciton density ln(nex), see below), if

the dispersion relation εk(P) = P2

2mHk
is true. Therefore the inequality D � 〈r〉 is valid when

D � √
nr 2

H.
The distinction between excitons and bosons manifests itself in exchange effects

(see [34, 35, 13]). These effects for excitons with spatially separated e and h in a dilute system
nexa2(H, D) � 1 are suppressed due to the negligible overlapping of wavefunctions of two
excitons on account of the potential barrier, associated with the dipole–dipole repulsion of
indirect excitons [13] (here nex, a(D, H ) are the exciton density and the magnetoexciton radius
along quantum wells, respectively). The small tunneling parameter connected with this barrier
is

exp

[
−
∫ r0

a(H,D)

√
2mHk

(
e2 D2

R3
− κ2

2mHk

)
dR

]
, where κ2 ∼ n/ln(1/8πnm2

Hke4 D4)

is the characteristic momentum of the system (see below); r0 = (2mHke2 D2/κ2)1/3 is the
classical turning point for the dipole–dipole potential at the energy equal to the chemical
potential of the system. In high magnetic fields the small parameter mentioned above has
the form exp[−2(mHk)

1/2eDa−1/2(H, D)]. Therefore the system of indirect magnetoexcitons
can be treated by the diagram technique for a boson system.

Since the effective Hamiltonian Ĥeff (equation (17)) of the system of indirect ‘dirty’
magnetoexcitons at small momenta is exactly identical to the Hamiltonian of indirect ‘dirty’
excitons without magnetic field, replacing the excitonic mass M = me + mh by the magnetic
mass mH and using the effective random field Veff, we can use the expressions for the ladder
approximation Green’s function [36, 37], collective spectrum, normal and superfluid density
and the temperature of Kosterlitz–Thouless phase transition [25] for the ‘dirty’ system without
magnetic field [26], replacing the excitonic mass and Q. Since the characteristic length of
the random field potential L is much shorter than the average distance between electron and
hole, the first step in the averaging procedure with respect to the random field results in the
Green’s function of a noninteracting exciton with an imaginary part. The second step takes
care of the exciton–exciton repulsion. The results of [26] show that the density of the superfluid
component and the temperature of the phase transition decrease with increasing disorder, and
give good correspondence with the results of the Lopatin–Vinokur approach for the weakly
interacting bosons in the presence of disorder [38].

10
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Since the characteristic frequencies and momenta which give the greatest contribution to
the Green’s function in the ladder approximation are [37] ωεD/e2 ∼ n/ log[r 2

H/(nD4)] � 1

and prH ∼ mH

√
n/ log[r 2

H/(nD4)] � 1, respectively, for the single-exciton Green’s function

G(0)(p, ω), participating in the ladder approximation, we approximate Q(p, ω) by Q(p =
0, ω = 0) (see equation (29)):

Q(p, ω) = Q = α2
e (g1 + g2)+ α2

h(g3 + g4)

64π4
mH. (30)

The chemical potential μ is obtained in the form (compare to [26]):

μ = κ2

2mH
= 8πn

2mH log
(

ε2

8πnm2
He4 D4

) (31)

where κ is a characteristic momentum. The condensate Green’s function D(p, iωk) is (cf [26])

D(0)(p, iωk) = −i(2π)2n0δ(p)

iωk + μ+ iQ
, (32)

where n0 is the density of Bose condensate. Since at small temperatures (n − n0)/n � 1,
according to the ladder approximation [36] we use below n instead of n0. G(p, iωk) and
F(p, iωk) are the normal and anomalous Green functions of the noncondensate:

G(p, iωk) = − iωk + ε0(p)+ μ+ iQ

ω2
k + ε2(p)− 2i(μ− ε0(p))Q

;
F(p, iωk) = − μ

ω2
k + ε2(p)− 2i(μ− ε0(p))Q

,
(33)

where ε0(p) is the spectrum of noninteracting excitons; the spectrum of interacting excitons
has the form

ε(p) =
√
(p2/(2mH)+

√
μ2 − Q2)2 − (μ2 − Q2),

and for small momenta p � √
2mHμ, the excitation spectrum is acoustic ε(p) = cs p, where

cs =
√√

μ2 − Q2/mH is the velocity of sound.
At large magnetic momenta P the isolated magnetoexciton spectrum ε(P), contrary to the

case H = 0, has a constant limit, equal to the Landau level ωc
2 for the reduced effective mass

(see [20, 14]). As a result, the spectrum of the interacting magnetoexciton system also has a
plateau at high momenta. Therefore, the Landau criterion of superfluidity is not strictly valid
at large P for the interacting magnetoexciton system. However, the probability of excitation
of quasiparticles with magnetic momenta P � 1/rH by a moving magnetoexciton system is
negligibly small at small superfluid velocities [21]. In this sense, the appearance of a linear
branch can be taken as the criterion for superfluidity of 2D magnetoexcitons.

The density of the superfluid component ns(T ) can be obtained using the relation ns(T ) =
n − nn(T ), where nn(T ) is the density of the normal component. The density of normal
component nn is (cf [26]):

nn = n0
n + N

mH

∫
dp
(2π)2

p2μ
ε0(p)

ε4(p)
Q. (34)

Here N is the total number of particles, and n0
n is the density of the normal component in a pure

system with no impurities,

n0
n = − 1

2mH

∫
dp
(2π)2

p2 ∂n0(p)

∂ε
, (35)

11
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where n0(p) = (eε(p)/T − 1)−1 is the distribution of an ideal Bose gas of temperature
excitations.

The first term in equation (34), which does not depend on Q, is the contribution to the
normal component due to scattering of quasiparticles with an acoustic spectrum in a pure
system at T �= 0 (cf [26]),

n0
n = 3ζ(3)

2π

T 3

c4
s (n, Q)mH

, (36)

where ζ(z) is the Riemann zeta function (ζ(3) � 1.202). The second term in equation (34)
is the contribution to the normal component due to the interaction of the particles
(magnetoexcitons) with the random field,

nn = n0
n + nQ

2mHc2
s (n, Q)

= 3ζ(3)

2π

T 3

c4
s (n, Q)mH

+ nQ

2mHc2
s (n, Q)

. (37)

The density of the superfluid component is ns = n − nn. From equations (36) and (37) we can
see that the random field decreases the density of the superfluid component.

In a 2D system, superfluidity appears below the Kosterlitz–Thouless transition temperature
Tc = πns/(2mH) [25], where only coupled vortices are present. Using the expressions (36)
and (37) for the density ns of the superfluid component, we obtain an equation for the
Kosterlitz–Thouless transition temperature Tc. Its solution is

Tc =
⎡
⎢⎣
⎛
⎝1 +

√
32

27

(
mHT 0

c

πn′

)3

+ 1

⎞
⎠

1/3

−
⎛
⎝
√

32

27

(
mHT 0

c

πn′

)3

+ 1 − 1

⎞
⎠

1/3
⎤
⎥⎦ T 0

c

21/3
. (38)

Here T 0
c is an auxiliary quantity, equal to the temperature at which the superfluid density

vanishes in the mean-field approximation ns(T 0
c ) = 0,

T 0
c =

(
2πn′c4

s mH

3ζ(3)

)1/3

. (39)

In equations (38) and (39), n′ is

n′ = n − nQ

2mHc2
s

. (40)

Even though an expression similar to equation (38) has been presented earlier in [26], the result
of this paper is nontrivial because it takes into account the influence of the strong magnetic field
on the excitonic superfluidity using mapping of the system with magnetic field onto the system
without field by replacing excitonic mass by magnetic mass.

5. Discussion

Figures 1 and 2 show the dependence of the Kosterlitz–Thouless critical temperature on
magnetic field and particle density, for different cases of the disorder potential. The superfluid
density ns and the temperature of the Kosterlitz–Thouless transition Tc to the superfluid state for
the ‘clean’, zero-disorder system at fixed exciton density n decrease as the magnetic mass mH

increases [21] (we can see this by setting Q = 0, which makes n′ = n and cs = √
μ/mH

in (38)). Since in strong magnetic fields, when D � rH, the exciton magnetic mass is
mH ≈ D3ε/(e2r 4

H) [20], the superfluid density ns and the temperature of the Kosterlitz–
Thouless transition Tc decrease with increase of the magnetic field H . There is an additional
effect due to the influence of the magnetic field on the effective random field felt by the

12
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Figure 1. Dependence of temperature of Kosterlitz–Thouless transition Tc = Tc(H ) (in units
K; for GaAs/GaAsAl: M = 0.24m0; ε = 13; m0 is a mass of electron) on the magnetic field
H (in units T) at gi = 104 nm4 at the interwell distance D = 15 nm; at the exciton density
n = 1.0 × 1011 cm−2; at the different parameters of the random field α = αe = αh: α = 0—solid
curve; α = 0.5 meV nm−1—dotted curve; α = 0.7 meV nm−1—dashed curve.

excitons. Since in ‘dirty’ systems, ns and Tc decrease with increase of the effective random field
parameter Q (analogous to the case without magnetic field, see [26]), and in a strong magnetic
field Q is proportional to mH (equation (30)), the increase of the magnetic field H increases
the effective renormalized random field Q, and suppresses the superfluid density ns and the
temperature of the Kosterlitz–Thouless transition Tc. Note that the approximation used slightly
underestimates the role of the disorder. So the estimation of the renormalized random field Q,
the suppression of ns an Tc are also slightly underestimated (the influence of the approximation
will be discussed in detail elsewhere).

The quantum phase transition presented in figures 1 and 2 is equivalent to the superfluid–
Bose glass transition in disordered bosonic systems. The latter transition has been extensively
discussed in literature (see [39–41]). Since the overlapping integral of the magnetoexcitonic
wavefunctions is proportional to the factor of exp[−〈r〉/rs] (where the average electron–hole
separation in the plane parallel to quantum wells 〈r〉 is the magnetoexcitonic radius, and
rs ∼ (πn)−1/2 is the average distance between two magnetoexcitons), for the very dilute
systems with the small parameter 〈r〉/rs � 1 the composite nature of the magnetoexcitons
can be neglected, and the quantum phase transition is equivalent to the superfluid to Bose glass
transition in the system of ‘dirty’ noncomposite bosons presented in [39–41].

Note that in the presence of the disorder there is a quantum transition from a superfluid
state to one in which the superfluid state is completely suppressed, even at zero temperature,

13
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Figure 2. Dependence of temperature of Kosterlitz–Thouless transition Tc = Tc(n) (in units K;
for GaAs/GaAsAl: M = 0.24m0; ε = 13; m0 is a mass of electron) on the exciton density
n (in units cm−2) at the interwell distance D = 15 nm at the parameters of the random field
αe = αh = 1.5 meV nm−1; gi = 104 nm4; at different magnetic fields H (in units of T): H = 0—
solid curve (for H = 0 we use the results of [30] for spin degeneracy factor s = 4); H = 14 T—
dotted curve; H = 15 T—dashed curve.

as the magnetic field H is varied. While in the ‘clean’ system at any magnetic field H there
is always a region in the density–temperature space where the superfluidity occurs [21], in the
presence of the disorder at sufficiently large magnetic field H and large enough parameters of
the disorder αe, αh and gi , there is no superfluidity at any exciton density.

Note also that in a magnetic field the superfluid density ns and the temperature of the
Kosterlitz–Thouless transition Tc decrease when the separation between quantum wells D
increases, because ns and Tc are decreasing functions of the magnetoexciton effective mass
mH (equations (37) and (38)), which is an increasing function of D [20]. The dependence of
ns and Tc on D through the magnetic mass m H ≈ D3ε/(e2r 4

H) and through the dependence
on the random field Q, which increases with increasing mH (equation (30)), is stronger
than their increasing logarithmic dependence on D through the velocity of sound related to
the logarithmic dependence on D of the chemical potential of the dipole–dipole repulsion
(equation (31)). The latter results in ns and Tc increasing with D in the case without magnetic
field [26]. The decrease of ns and Tc with increasing D at high magnetic fields H is significant
when D is large (D ∼ 30rH), which is far from the typical D used in experiments, because at
very large values of D the superfluid system of magnetoexcitons must transform into the system
of two incompressible liquids [19], i.e. the binding energy of the magnetoexcitons vanishes in
the limit D → ∞.
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In the high magnetic field limit at high D, the effective random field is not small, and
the approaches assuming coupling with the random field to be much smaller than the dipole–
dipole repulsion [42, 43] are not applicable. Note that in the present work the parameter
Q/μ is not required to be small, and our formulae for the superfluid density and Kosterlitz–
Thouless temperature can be used in the regime of realistic experimental parameters taken from
photoluminescence line broadening measurements [5]. The coherent potential approximation
(CPA) allows us to derive the exciton Green’s function for the wide range of the random field,
and in the weak scattering limit the CPA results in the second-order Born approximation.

The system of ‘dirty’ indirect magnetoexcitons can appear also in unbalanced two-layer
electron systems in CQW in strong magnetic fields near the filling factor ν = 1. An external
electric voltage between quantum wells changes the filling, so, for example, in the first quantum
well the filling factor can be ν1 = �ν � 1

2 and in another one it will be ν2 = 1 − �ν.
Unbalanced filling factors ν1 = 1 + �ν, ν2 = 1 − �ν are also possible. Thus in the first
quantum well (QW) there are dilute electrons on the second Landau level, and in the second
QW there are dilute empty places (holes) in the first Landau level. Excess electrons in the
first QW and holes in the second QW can bind to indirect magnetoexcitons with the density
nex = eH�ν/2π . The influence of disorder on the superfluidity in two-layer unbalanced e–e
system in high magnetic fields is completely analogous to the one for two-layer e–h system.

Note that in this paper we assumed spin degeneracy factor s = 1 in high magnetic fields
H . Since at H = 0 the spin degeneracy is s = 4 [26], at low H lifting spin degeneracy will
have substantial effect on the magnetoexciton superfluidity, which we do not take into account
in this paper where we consider only high H .
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